Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes.
نویسندگان
چکیده
Membrane fusion induced by the envelope glycoprotein enables the intracellular replication of HIV-1; hence, this process constitutes a major target for antiretroviral compounds. It has been proposed that peptides having propensity to interact with membrane interfaces might exert broad antiviral activity against enveloped viruses. To test this hypothesis, in this contribution we have analyzed the antiviral effects of peptides derived from the membrane-proximal external region and the transmembrane domain of the envelope glycoprotein subunit gp41, which display different degrees of interfacial hydrophobicity. Our data support the virucidal activity of a region that combines hydrophobic-at-interface membrane-proximal external region aromatics with hydrophobic residues of the transmembrane domain, and contains the absolutely conserved 679LWYIK/R683 sequence, proposed to embody a "cholesterol recognition/interaction amino acid consensus" motif. We further sought to correlate the antiviral activity of these peptides and their effects on membranes that mimic lipid composition and biophysical properties of the viral envelope. The data revealed that peptides endowed with virucidal activity were membrane active and induced permeabilization and fusion of virus-like lipid vesicles. In addition, they modulated lipid packing and miscibility of laterally segregated liquid domains, two properties that depend on the high cholesterol content of the viral membrane. Thus, the overall experimental evidence is consistent with a pattern of HIV inhibition that involves direct alteration of the physical chemistry of the virus membrane. Furthermore, the sequence-dependent effects observed might guide the development of new virucidal peptides.
منابع مشابه
Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion.
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled c...
متن کاملDesign of potent inhibitors of HIV-1 entry from the gp41 N-peptide region.
The HIV-1 gp41 envelope glycoprotein promotes fusion of the virus and cell membranes through the formation of a trimer-of-hairpins structure, in which the amino- and carboxyl-terminal regions of the gp41 ectodomain are brought together. Synthetic peptides derived from these two regions (called N and C peptides, respectively) inhibit HIV-1 entry. In contrast to C peptides, which inhibit in the n...
متن کاملLipid membrane fusion induced by the human immunodeficiency virus type 1 gp41 N-terminal extremity is determined by its orientation in the lipid bilayer.
The amino-terminal extremity of the human immunodeficiency virus type 1 transmembrane protein (gp41) is thought to play a pivotal role in the fusion of virus membranes with the plasma membrane of the target cell and in syncytium formation. Peptides with sequences taken from the human immunodeficiency virus type 1 gp41 fusogenic (synthetic peptides SPwt and SP-2) and nonfusogenic (SP-3 and SP-4)...
متن کاملHIV-1 Fusion Inhibitor Peptides Enfuvirtide and T-1249 Interact with Erythrocyte and Lymphocyte Membranes
Enfuvirtide and T-1249 are two HIV-1 fusion inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry into host cells. Previous studies established the relative preferences of these peptides for membrane model systems of defined lipid compositions. We aimed to understand the interaction of these peptides with the membranes of erythrocytes and peripheral...
متن کاملMechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41.
Induction of broadly neutralizing antibodies (bNAbs) is an important goal for HIV-1 vaccine development. Two autoreactive bNAbs, 2F5 and 4E10, recognize a conserved region on the HIV-1 envelope glycoprotein gp41 adjacent to the viral membrane known as the membrane-proximal external region (MPER). They block viral infection by targeting a fusion-intermediate conformation of gp41, assisted by an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 113 6 شماره
صفحات -
تاریخ انتشار 2017